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A procedure is developed for sclving the Riemann problem (RP) for
the flow of gases obeying an equation of state (EOS) of the form
p=p{p. T} A first method is introduced, producing solutions of the
exact RP; the algorithm is validated by applying it to the classical test
case of the shock-tube, for a perfect gas. Thereafter, the method is
applied to gases having EQS of the Van der Waals ar virial types, with
very good resulting accuracy; however, the progedure is somewhat
demanding in computer time, Therefore, some simplifying assumptions
are inttoduced into the computation of simple waves, leading to an
approximale solution of the RP; in most circumstances, excellent
1esuits are obtained, and the computer time is much more compelitive,
However, under certain extreme flow conditions, it is recommended
that a combination of the exact and approximate solvers for the RP be

employed.  © 1994 Academic Press, Inc.
I. INTRODUCTION
Numerical computation methods based upon the

Riemann problem (RP) have seen a marked lavour during
the last decade, mainily through the emergence of high-
resolution upwind methods, which make use of the basic
coneepts introduced by Godunov [7] and Van Leer [20].
The finite-volume formulation of these methods, adapted to
computations by unstructured grids, has led to the develop-
ment of powerful codes, which have allowed us to solve
a number of problems involving complex geometrical
features.

Solving the RP [urnishes a very accurate estimation of the
Euler fluxes and, thereby, a high precision in the solution of
the gas-dynamic equations. Especially, sccond-order exten-
sions of Godunov-type schemes, as well as the emergence of
TVD (total variation diminishing ) algorithms have brought
about the possibility to capture the discontinuitics with very
good accuracy. Last, the formulation of any type of bound-
ary conditions is quite easy, once a Riemann solver is
employed for the computation of corresponding points.

More recently, the problems related to the reentry of
space vehicles, as well as the development of novel propul-
sion devices, such as the “Ram Accelerator” have brought
into the forefront the need for solving the RP for real gascs
having an eguation of state (EQS) of a general form.
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However, taking into account the real-gas EOS renders dif-
ficult the resolution of the RP. Actually, in the case of a per-
fect gas, and for a simple wave, there are two Riemann
invariants, which may be explicitly expressed in terms of the
flow variables:

Yra=vF c.

Yo ™ !

Concerning the shock conditions, again in the case of o per-
feet gas, the shock Mach number is expressed as a function
of the pressure ratio, while the other parameters behind the
shock may be deduced analytically in terms of the shock
Mach number. Therefore, in the case of a perfect gas, all the
above-mentioned relations, which connect explicitly the
flow parameters between themselves, lead to an easy resolu-
tion of the RP [7, 9]. On the contrary, in the case of a real-
gas EOS, in a simple wave, as will be discussed herealter,
one has to employ the direct expression of the Riemann
invariants:

'
pr=oF [ pelp, ) dp

and the trouble arises because the integral has to be
evaluated along an isentrope curve. Then, for the computa-
tion of the state behind a shock wave, the whole coupled
jump conditions have to be satisfied simultancously; thus,
the resolution of the RP becomes more involved and
demanding in terms of CPU time.

It is, therefore, precisely the problem of solving the RP in
the case of & real-gas EOS, that is the subject of the present
piper, 1n this connection, one should recall the work of
Toro [19], who solved the RP for an EOS with constant
covolume. However, in this case, the Riemann invariants
had an analytical expression and, therefore, the resolution
procedure was similar to that for a perfect gas. Plohr [16]
solved the RP for an EOS of a “stilfened gas,” which was
supposed to mimic the behaviour of a metallic solid, when
traversed by a shock. Here also, the form of EOS allows a
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solution of the type “perfect gas” for the RP. In another
approach, one finds in the literature the papers by Liou
etal. [13] and by Vinokur and Montagné [21], who
adapted the flux vector splitting procedure due to Van Leer
[20], or the work of Glaister [ 5], who applied to a real gas
the idea of a linearised Riemann solver, due to Roe [17], or,
finally, the approximate method by Collela and Glaz [3]. It
should be pointed out that Van Leer’s method, as well as
Roe's, employ approximate solvers for the RP. Such
methods are efficient within the framework of a mult-
dimensional code, since the approximate solution of the RP
is less costly in terms of CPU time. On the other hand, they
fail to provide an accurate evaluation of the Eulerian fluxes,
as is possible with a method based upon an exact selution
of the RP and, as a consequence, they lose precision in the
capture of contact surfaces, as well as in the treatment of
boundary points.

For these reasons, we felt it was important, first, to be
able to provide exact solutions to the RP in the case of a real
gas. We propose several techniques of resolution, and we
then implement them in the random choice method
[6, 4, 8], which is, itself, one of the methods where the RP
is implied in a natural way.

In the second section, the principle of an exact numerical
method for the RP wili be developed for the case of an EOQS
having the general form p= p(p, T). Our approach will be
tested upon the classical case of the shock tube, successively
for the perfect gas EOS, the Van der Waals EOS, and a fifth-
order virial EOS.

In the third part, we dwell upon the necessary assump-
tions for an approximate solution of the exact Riemann
problem; these assumptions concern the Gruneisen coef-
ficient and the adiabatic exponent. Their adoption renders
possible a faster numerical computation, as the Riemann
invariants take a simple analytic expression of the perfect-
gas type. The new procedure will be submitted to the same
tests as above. In certain circumstances, under severe ther-
modynamic conditions, the approximate solution of the RP
might be slightly in error; it shall be proposed then to com-
bine the exact solver, applied to questionable points, with
the approximate solver, appiied to the rest of the flowfieid.

2. THE EXACT RIEMANN SOLYER

The one-dimensional Euler equations, in the variables p,
v, and s (density, velocity, and entropy) may be written as

581/112/1-9
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Here ¢ and I are, respectivety, the speed of sound and the
Gruneisen coefficient, and they are defined as

2)

(3)

The choice of the formulation (1) for the Euler equations
will allow us to manipulate a system of three equations with
three unknowns, without having to specify explicitly the
EOS which will be employed. The equation of state is,
actually, only necessary for the computation of the sound
speed and of the Gruneisen coefficient,

Riemann’s viewpoint consists in assuming that, at every
point within the flowfield, any variation will engender a
couple of waves, facing respectively to the right and to the
left. The connection between the two domains (¥, r*) takes
place across a constant surface. The emerging waves are
cither simple waves, or shocks; thus, the wave diagram can
take four distinct configurations (Fig. 1).

The strategy of resolution which we follow is frequently
cmployed and known upon the appelation “Godunov itera-
tion” 7, 8]. It consists in giving a value for the pressure in
the region between the right and left facing waves: p* =
pF=p¥ (during the first iteration p*={(p, + p,)/2, for
example). With the knowledge of this pressure, one deter-
mines directly the type of each wave: if the ratio p*/p, (or
P*/p,)is greater than unity, the right {or left) facing wave is
a shock wave, else it is a rarefaction wave. To determine the
flow parameters behind the waves {#* and /* states), one
has to know the jump conditions across each type of wave:
Riemann invariants for rarefaction waves, jump relations
across contact surface, and Hugoniot relations for shock
waves. In particular, one has to compute the velocity in each
region (v and v¥). As we will see hereafter, it can be shown
easily that across the contact surface, pressure and velocity
must be constant. So if ¥ is not equal to v ¥, that means that
the initial value of p* is not adequate, and one must iterate
on p* until the condition of constant velocity is reached.

L}
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FIG. 1. Representation of Riemann’s problem of gas dynamics.
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To follow this procedure of resolution, one must know
the jump relattons across each type of wave. Following
Jeffrey [11] one finds:

— Riemann invariants of simple waves facing left or
right:

P
Vi=s  Wi=oF[ paod (@)

{+, right; — , left). We point out that the integral over p has
to be evaluated along a constant-entropy curve, and in this
fact precisely resides one of the main difficulties.

— Riemann invariants across the contact surface:

(5)

— Relations across the shock: one looks for the state 7*,
supposing the state / to be known. The jump relations are:

pi V= Pf* VX

pitpVi=pr+prvy
% v

2

(6)

o — = h*
i+ 7 ;o

with i=r, f, i*=r* [*and V,=v,—- U, V¥=0}-U_. U,
is the actual propagation velocity of the shock wave, while
¥ is the velocity in a frame of reference bound to the wave.
As noted before, the resolution of the RP is considerably
simplified if the equation of state is that of a perfect gas.
Actually, in Eq. (4) the quadrature is analytic and the
system (6) possesses solutions which depend directly upon
the shock Mach number; this latter is readily determined
from the pressure ratio p¥/p;. On the other hand, if the EOS
is such as not to allow using the above facilities, the resolu-
tion becomes heavier and more subtie; the trouble stems,
essentially, from the evaluation of the Riemann invariant
integral, which has to be performed for constant entropy.
Let us, e.g., consider the case when one has to determine the
flow variables in state /*, knowing the state / (Fig. 2). The
velocity in state 7* is given by

*

P L di
vl =v, P elp, s)dp.

Pt

(7)

As we have already pointed out, knowledge of this
velocity is essential for the Godunov iteration procedure.
The first difficulty resides in finding the limit p}*. Starting
from the known state /, one has to search, along the isen-
trope passing through /, the state /™*, which is to be found at
the intersection of this curve and the isobar p = p* {where
p* is the pressure which is supposed to be established in the
region between the left- and right-facing waves).
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FIG. 2. Intersection between an isobar and an isentrope.

This means that one has to solve the equation
p*—plp, Ts{(p)=0, in which the value Ts(p) is to be
computed, step by step, along the isentrope, with the help of
the relation

C, 1 dp
AT —— ———— =
T p’ (8T/dp),

¢ (8)
which expresses the property ds=0 in the plane (7, p).
Now, having found p}, one may carry out numerically the
integration

o

p'e(p,s) dp 9)

Pr

along the isentrope curve. To this purpose, one has to
express the sound speed ¢ as a function of certain variables,
which should be, in turn, determined by starting from the
equation of state. If one has available an EOS of the form
p=p(p, T), which is true for the equation of state of a
perfect gas, the Van der Waals, or the virial equation, then
it is convenient to write the speed of sound as

=) --¢5)./5)
GLYR C.\ép/,i\ép),)

where €, and C . are, respectively, the specific heats at con-
stant pressure and at constant volume, being related by

(10)

T (6p/2T),

C,=C,—= .
g p* (0Tf3p),

(11}
The partial derivatives, (¢p/@T), and (8T/dp),, appearing
in Egs. (10), (11) are readily calculated with the help of the
EOS.

The computation of flow variables behind shock waves
poses no special problems. The system of Egs. (7) can be
solved once one knows the expression of the EOS and that
of the enthalpy as a function of p and T and one is given one
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of the variables behind the shock {e.g., p* or U ,—the shock
speed). If an explicit expression for the enthalpy as a func-
tion of p and T is not available, one may set, in Eq. (7),

Ly Bh) ol (ah)
h¥—h,= — dTr + — d 12
.L (ar pns J.p:, 30 ) p (12)

with

(5h) Co+t 1
— ) =Cp+—
aT p p(aT/ap)p

(@) _ L1+ ep),
é)r 0 (UD@ETp),

To summarize, the procedure of computation for solving
the RP can be detailed as follows: Set the initial value of p*
(p*=(p.+ p))/2, for example). Determine the type of
waves travelling to the right and to the left.

if one of these waves is a rarefaction, compute p¥* (i=ror
{): Starting from the known state i, follow the isentrope
curve with the help of (8) until the condition
p*— p(p, Ts(p)y=0 is reached. Then compute ¢* with the
help of {7) or (4} expressing the sound speed by (10).

If one of the waves is a shock wave, set an arbitrary value
of the shock velocity U, (for example, the perfect gas shock
velocity). Then compute p}* and ¥* by the mass and
momentum conservation equation of system (6). If the
energy equation is not satisfied by the set (p*, V.*, and p*)
change the initial value of U, until convergence. If an
explicit expression for the enthalpy as a function of pand T
cannot be derived, use {12) and (13). Compute, thereafter,
p¥=V*+ U,

If the condition v* = v} is not satisfied, change the initial
value of p*.

Once the Riemann solver has been assembled, it may be
incorporated in any numerical method based upon the RP.
We have set out, for the test cases to be discussed herein, to
use it in the RCM method, which is the method utilising in
the most natural way the Riemann problem. The inclusion
of the Riemann solver in the RCM, which is a little peculiar
because of the random sampling procedure is given in
Larini et al. [12].

2.1. Test Problems

The test case to be investigated is the classical shock-tube
problem; in all subsequent numerical comparisons, the
overall tube length is 0.4 m, the initial discontinuity is
placed at 0.2 m, and the same gas is filling both chambers.
In all computations performed with the RCM, the grid
chosen consists of 70 points, uniformly distributed along the
abscissa,
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{(a) Perfect-gas case. The sole interest of this test case
resides in the possibility to check whether the algorithm
being incorporated and later to be used for real gases, is
working properly. In this case, the shock-tube driver cham-
ber is initially filled with gas at 5000 K and a density of
100 Kg/m?*, while the driven channel contains the same gas,
but at 3000 K and 10 Kg/m?. Results will be presented for
the instant r=80x 10~*s,

The equation of state, in this case, reads as p = pRT, with
R=23111])/Kg K and

(GT) _ P
dp P_ p’R

(?I) L
oPJ, pR

Cv=577,8 J/Kg K.

Results displayed in Diagram 1 show full agreement
between the analytic solution and the computed values, thus
giving confidence in the correctness of the computational
procedure,

(b) Van der Waals’ equation of state. The shock-tube
problem is to be treated here uses the same initial conditions
as for the perfect-gas case discussed above. Thus, it will
become possible to emphasize the differences in behaviour
due to the different equations of state.

Van der Waals” EOS to be used is

(P+ap®)t/p—p)=RT  «=0.138 (SI),
f=3.258 %105 (SI)
R=231.111Kg-K
(?_Z) _2ap — RT/[p*(1/p— B)*])
ap/p Ri(Y/p~P)
(Qf) _(1/p=8)

éP), R

Cv=5718J/Kg-K.

A sufficient condition for convexity of this EOS is 1/p>
and « > 0. S0 this EOS is convex for the present test case.
An analytic solution to the shock-tube problem is not
available in this case; therefore the comparison of our
results, obtained by applying the above Riemann solver
within the random choice method, will be made with those
provided by a finite-difference method [ 14], which does not
make use of the resolution of a Riemann problem. This lat-
ter method has been applied with grids of 70 and 700 points;
only the 700-point grid had to be retained (ten times more
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DIAG. 1. Shock tube with perfect gas: <, RCM; solid lines, exact solution.

than in the RCM), in order to obtain consistent results, The
artificial viscosity coefficients have been chosen following
numerical experiments, so as to enhance the capture of dis-
continuity fronts; thus, an artificial viscosity coeflicient of
0.03 was retained for the 700-point grid, while its value for
the 70-point grid has been set at 0.003.

Comparing the values of the pressures and the positions
of the shock and contact surfaces in Diagrams I and 2, one
may assess the differences brought about by the use of the
Van der Waals EOS, in contrast with the perfect-gas case.

(c) Fifth-order virial equation of state. The same shock-
tube test problem will now be reconsidered, but under
extreme initial conditions, rendered possible by the adop-
tion of this EOS: namely, in the driver chamber, an initial
temperature of 5000 K and initial density of 1800 Kg/m’;
while in the driven channel one starts with 3000 K and
100 Kg/m?; results are presented for 1 =24 x 10~ %s.

The particular EOS to be employed has been developed

by Heuzé [10], especially for the study of detonation
products of highly energetic explosives. It has been success-
fully applied to numerous problems in detonation theory
[1,2] and to the study of the deflagration—detonation
transition [18]. Its expression is ’

p=pRTo(x) with o(x)=1+ x + 0.625x>

+0.287x - 0.093x* + 0.0014x7,

where x = pQ/T%** while  depends upon the gas composi-
tion and the covolume of its constituents (for the explosive
studied here £ = 18.66 x 10~ (SI),

14,

&)
dple pAr

oy _ 1
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lines, finite-differences, 70 points.

with
pQ2 do
A7-= pR |:0'(‘C)—033'};—.Eai|,

d
A,=—pR [pTa(x) + p?To¥Q —J].
dx

C, is derived here from Helmholtz's free-energy [107] and
thermochemical data {JANAF tables). The enthalpy is
directly deduced from the equation of state; denoting by
E°(T) the “perfect-gas™ part of the internal energy, one has

hip, T)=E°(T)+%Z(a(x)—1)+M

This EOS is always convex in its domain of validity:
1 Kg/m? < p < 1800 Kg/m® and 300 K < 7"< 10,000 K.

In the two real-gas cases examined, the superiority of the
RCM is obvious, by comparison with the finite-difference
method, even when the number of points differs by a factor
of 10 (see, in particular, the capture of the contact surface,
Diagram 3); nevertheless, referring to the required com-

puter time, the higher accuracy of the RCM appears as very
costly:

CPU (seconds on an 1BM 3090}

Van der Waals Fifth-order virial

finite-differences, 700 points 14.5 23
RCM 70 points 40 91

These findings provided the motivation for the following
analysis, in which certain assumptions will be put forward,
in order to ease the numerical computation.
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3. APPROXIMATE SOLUTION OF THE EXACT
RIEMANN PROBLEM FOR A REAL GAS

In this section, an approximate solution procedure will be
developed for the exact Riemann problem; the aim is to set
up a more competitive method, in terms of CPU time, than
the exact method discussed above. The improvement is
arrived at by introducing certain assumptions in the com-
putation of simple waves. Results to be shown will again be
obtained after implementing the solver in the RCM.

3.1. Thermodynamic Foundations

Davis [22] and later Menikoff and Plohr [15] have
emphasized the interest of using non-dimensional
parameters for characterizing the thermodynamic state of
the fluid. Within our work we shall make use of two such
parameters, as introduced by Menikoff and Plohr [15],

v (d%
=35, o
v [ &%
== . 1
r--3as) 15)

Where v==1/p, v is the adiabatic exponent, while I is
Gruneisen’s coefficient. These two parameters are precisely
those which will serve to develop the approximate resolu-
tion method. First, regarding the adiabatic coefficient, it is
easily proved that it can be written as

p @)
=== (16)
p(@p .
or, further, after some thermodynamic transforms,
Cp(eT/0
__pCpléT/op), (17)

p Cu(eT/dp),

Equation (17) is particularily interesting since, if one has an
EOS of the form p = p(p, T), it becomes easy to express the
adiabatic exponent in terms of p and 7. In the particular
case when the EOS is chosen to be that of a perfect gas, one
recovers, for the adiabatic coefficient, y =y, = Cp/Cv.
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On the other hand, Gruneisen’s coefficient, as defined by
Eq. (15), can be written in a simpler form,

p (aT
===
T(ap),

or, even more practically,

{18)

1 1

F=ﬁ(_ar/a—p)p' (19)

This latest equation expresses directly I as function of p
and T. In the particular case of the perfect-gas EOS, one has

C
r=r,==*

pg_cv_1=

—L

Vg

Remarks. 1In order to compute y and I~ with the help of
Egs. (17) and (19), one has to know the quantities (97/dp),
and (@7/dp), and, therefore, to be given an equation of
state. One has to know also eigher C, or C,, the specific
heats at constant pressure and volume, which are related
through Eq. (11}, In the particular case of the perfect-gas
EOS, one recovers the formula Cp= Cv + R. On the other
hand, the speed of sound, which has been defined by Eq. (2),
can now be written, making use of Eq. (16), whichever is the
EOS to be adopted:

¢ =7p/p. (20)

3.2. Approximations along an Isentrope

Equations (16) and (18) may be written along an isen-
trope curve, as
(21)
(22)

dp/p--ydpfp=0
dT/T—I'dp/p =0,

and, from these, one can derive another relation, valid along
an isentrope,

dT{T— iy dp/p=0. (23)

If Egs. (21), (22), and (23) are integrated along an isen-
trope, between two states, defined by p,, p,, T;and pF¥, p¥,
T*, which are sufficiently near, in order to allow consider-
ing that y and I" are constant along the isentrope connecting
these states, it follows that

pr (p,-* 4
Pi_ ﬂf)

(24)
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T _(pF\
=70 @)
Ti* l'* o
LE -

If, however, the assumption of constant y and [ is not
fully justified, since the two states i* and { are not suf-
ficiently close to each other, one may still use Eqgs. (24),
(25), and (26), taking, as approximate values for ¥ and I,
their mean values

(27)

0.5(7(p,, T)+v(pF, T3))
0. (28)

F=
F=05(I(p,, TY+ I(p}, T*))
Use of Egs. (27) and (28) might require iteration.

3.3. Approximate Resolution of the Riemann Problem

The simplifying assumptions which will be brought into
the selution of the RP concern the computation of simple
waves. The quantities defined by Eq.(5) are Riemann
invariants which, for a left-facing wave, lead to the relation

ot

v¥=v,—| p'c(p,s)dp (29)
ot
and, for a right-facing wave, lead to
I
vr=v,+ | ptclp,s) dp. (30)

or

Here, the states / and r are supposed known, and one has to
find the states [* and r* that fulfill Eqgs. (29) and (30). Using
Eq. (20}, one may eliminate the sound speed between Eqgs.
(29) and (30). Let us consider, e.g., a left-facing wave. Sup-
pose that the states / and /* are sufficiently close to each
other and, as the integration has to be carried out along an
isentrope, that one may use Eq.(24) and perform an
analytic quadrature. It follows that

ot 2
I= I “le(p, s)dp =

Pf* (pi—1)/2
~ o[(E)) o
o y—1 P

where y,=y(p;, T)).
Within the same assumptions one obtains, for the right-

facing wave,
N\ {pr—1)/2
Ir - 2 Cr [(p_r) B ]].
Y 1 2y

(32)
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Keeping into account Eqs. (31), {32), and (24), relations
{29) and (30) become

2 Ay — LY 20
e el (8
7i—1 P
3 *N (7 — 1)/ 29
v¥=p, — c,[(p') Al].
yr_,] Pr

The computation of shock waves remains, on the other
hand, unchanged {see Section 2).

(33)

(34)

Remarks. 1f the states / and, respectively, r, are not suf-
ficiently close to the states /* (or r*), by extension of what
has already been presented in Section 3.2, one may still use
Egs. (33) and (34), after replacing y, {and, respectively, y,)
by

Fr=3(y+y})  (resp.7.=3(y, + X))

On the other hand, the iterative solution of the RP
requires that the value of p*, the pressure prevailing
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between the left- and right-facing waves be given. The choice
p*=1(p, + p;)/2 often proves itself to be inaccurate. A good
guess for the initial value p* can be obtained by assuming
that the left- and right-waves are simple waves. Writing that
v=p} =0} and that p* = p¥ = p¥in Eqs. (33) and (34) one
finally finds

e+, +{(y—1)2) v, —v,)
c €,
P}’f—l}ﬂ_*_ po-12

P* with y=19,+7y,/2

(35)

3.4. Test Problems

The test cases are computed using the same conditions as
in the preceding section; thus, one is able to compare the
differences in accuracy and computing times.

(a) Van der Waals’ equation of state. The agreement
here is excellent, with indistinguishible differences between
the exact and approximate solvers (Diagram 4).
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{b) Fiflth-order virial equation of state., This test case
allows us to consider extreme thermodynamic conditions. A
slight disagreement 1s observed {Diagram 5), essentially in
the computation of the temperatures on the two sides of the
contact surface. This is explained by the excessive discrepan-
cies between the state /, in the driver chamber, and the state
{*, whereby the assumption of constant (or mean) y and £
fails when the resolution of the first Riemann problems is
undertaken. This can be pointed out by plotting exact and
approximate isentropes (Fig. 3), starting from the condi-
tions of the low pressure chamber and reaching the density
of the high pressure chamber. These isentropes are found
using relation (8) for the exact isentrope and (25} for the
approximate one, taking for I” the vaiue in the low pressure
chamber,

By contrast, one can see in the case of Van der Waals
EOS that the discrepancy between exact and approximate
isentropes is less important (Fig. 4).

When the assumption of a constant /" and y is no longer
valid {in the case of the virial EOS) one must use the exact
Riemann solver. If we plot variations of y and I" along the
exact isentrope (Figs. 5 and 6) one can devise a criterion for
the use of the exact or approximate solver.

For the present EOS, s0 long as the ratio I, /T is com-
prised between 0.7 and 1.4, the approximate Riemann salver
is sufficiently accurate; else one must use the exact solver.
This situation occurs for the present calcuiation only during
the first three time steps. Use of the exact solver for the first
time-steps permits one to compute several points (at least
two) within the expansion wave and so to dispose of states
lying sufficiently close to each other for the subsequent com-
putation using the approximate solver. Excellent results are
then obtained, without being too costly in terms of CPU
time {Diagram 6).

The solver thus set up is now competitive as to CPU time
in all cases, and it is highly accurate.

CPU (seconds on an IBM 3090)

Van der Waals  Fifth-order virial

Finite-differences, 700 points 14.5 23
RCM, 70 points (approximate) 42 6.2
RCM, 70 points (mixed method) 79
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4. CONCLUSIONS

Two methods for the resolution of the exact Riemann
problem, in the case of a real gas, have been put forward.
The first furnishes an exact solution to the exact RP, but it
is difficult to implement and costly in CPU time. The second
method provides an approximate solution to the exact RP,
which is much faster and easier to set up. The simplification
stems from a set of assumptions which greatly simplify the
computation of simple waves. In most cases of practical
interest, the approximate solver gives excellent results and
may, therefore, be embedded into multi-dimensional codes
which are based upon the use of the Riemann problem. It
may also be used with any other method for the computa-
tion of boundary points.
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